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CO2 from Energy is a Major Contributor to 
Anthropogenic Greenhouse Gas Emissions

Source:  EIA Report #EIA/DOE-0573 (98)
“Emissions of Greenhouse Gases in the U.S.: 1998 Executive Summary” (Nov. 99)
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Technological Carbon Management Options

Improve
Efficiency

Sequester
Carbon

• Renewables
• Nuclear
• Fuel Switching

• Demand Side
• Supply Side

• Capture & Store
• Enhance Natural 

Sinks

Reduce Carbon
Intensity

All options needed to:

• Affordably meet energy 
demand

• Address environmental       
objectives
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Ocean Sequestration
• Direct injection of CO2 into the ocean

DOE Center for Research on Ocean Carbon Sequestration
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Implications from Previous Research

• Physical and chemical behavior of CO2 in the deep 
ocean, especially formation of CO2 hydrate, will impact 
the sequestration process.

− Hydrate formed from a two-phase system (liquid or gaseous 
CO2 in contact with seawater) is initially less dense than 
seawater.

• Rising hydrate particles reduce sequestration efficiency.
• Greater injection depths required.

− Hydrate formed from a single-phase system (CO2 dissolved in 
seawater) is initially more dense than seawater.

• Sinking hydrate particles enhance sequestration efficiency.
• Longer CO2 residence times.



03WebPage-RPW/ST-30/041403

Hydrate Formation from Single-Phase Solutions
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Status of Current Research  

• Fundamentals of hydrate formation

− Conducting experiments to validate thermodynamic model for 
predicting two-phase hydrate equilibrium (formation from single-
phase aqueous solutions).

− Modifying and improving theoretical model for prediction of 
single-phase hydrate formation.
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High-Pressure, Variable-Volume Viewcell

• Features
− Direct observation of systems from 243 K to 473 K (-30oC to 

200oC) at pressures to 138 MPa (20,000 psig).
− System pressure easily changed via internal piston.

− Remote monitoring and recording of observations.

General Purpose Seawater (GPS) from Ocean 
Scientific International, Ltd.  Cell at 5.8oC, 16 MPa. 

Piston face

Stirring bar

Port

View through glass window

High-Pressure, Variable-Volume Viewcell

PistonBrass spacer

Nut

Sapphire Window

Water w/ dissolved 
hydrate former

Borescope w/ 
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camera

Magnetic
stirring bar
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High-Pressure Viewcell System

View showing syringe pumps, chamber, 
and computer monitoring and control
system.

View showing viewcell in chamber
and borescope placement.
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Experimental Data and Analysis

• Experimental results for two 
cycles at XCO2 = 0.016
using 18 Megohm-cm water.

Rapid cooling

• A derivative plot permits more 
accurate determination of the 
hydrate dissociation point.
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Examination of Heating Rate

dP/dT vs. Temperature at Xco2=0.016
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Comparison at Different Pressures

dP/dT vs. Temperature at Xco2=0.016
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Prediction of Single-Phase Hydrate Formation
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Modified Thermodynamic Model

• Hydrates form from single-phase solution, at fixed 
temperature

• Hydrates form from two-phase solution, at fixed temperature

• Subtract (2) from (1), for single hydrate species, we obtain
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Which gives the increase in pressure (over the VLH
pressure) required to form hydrates.
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Modified Thermodynamic Model (Cont.)
• Finally,

− The approximations: 
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Comparison of Experimental 
and Predicted Data by the Modified Model
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Summary

• Experimental procedures have been developed for 
determining the phase behavior of hydrate formed 
from single-phase aqueous solutions.

• A theoretical model is being developed to describe 
the behavior of hydrate formation from single-
phase aqueous solutions.

• The results of this research will be useful in 
determining the efficiency and impacts of deep-
ocean sequestration.
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Future Work

• Theoretical
−Combine “restricted rotation model” and “expanded 

cell model” to develop new models to provide a 
better understanding and prediction of the system.

− Incorporate the effect of seawater.

• Experimental
−Complete experiments in freshwater.
−Perform experiments in seawater.
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